Search results for "insect flight"
showing 6 items of 6 documents
Locust flight metabolism studied in vivo by 31P NMR spectroscopy
1991
Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight. 1. In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for …
Functional Gustatory Role of Chemoreceptors in Drosophila Wings
2016
Summary: Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca2+ levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechan…
Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons
2019
Summary Insect flight is a complex behavior that requires the integration of multiple sensory inputs with flight motor output. Although previous genetic studies identified central brain monoaminergic neurons that modulate Drosophila flight, neuro-modulatory circuits underlying sustained flight bouts remain unexplored. Certain classes of dopaminergic and octopaminergic neurons that project to the mushroom body, a higher integrating center in the insect brain, are known to modify neuronal output based on contextual cues and thereby organismal behavior. This study focuses on how monoaminergic modulation of mushroom body GABAergic output neurons (MBONs) regulates the duration of flight bouts. O…
Central Modulatory Neurons Control Fuel Selection in Flight Muscle of Migratory Locust
2003
Insect flight is one of the most intense and energy-demanding physiological activities. High carbohydrate oxidation rates are necessary for take-off, but, to spare the limited carbohydrate reserves, long-distance flyers, such as locusts, soon switch to lipid as the main fuel. We demonstrate that before a flight, locust muscles are metabolically poised for take-off by the release of octopamine from central modulatory dorsal unpaired median (DUM) neurons, which increases the levels of the potent glycolytic activator fructose 2,6-bisphosphate in flight muscle. Because DUM neurons innervating the flight muscles are active during rest but selectively inhibited during flight, they stimulate carbo…
Properties of 6-phosphofructokinase from insect flight muscle
1987
Coordination and Integration of Metabolism in Insect Flight*
1997
Abstract Insect flight is the most energy-demanding activity of animals. It requires the coordination and cooperation of many tissues, with the nervous system and neurohormones controlling the performance and energy metabolism of muscles, and of the fat body, ensuring that the muscles and nerves are supplied with essential fuels throughout flight. Muscle metabolism can be based on several different fuels, the proportions of which vary according to the insect species and the stage in flight activity. Octopamine, which acts as neurotransmitter, neuromodulator or neurohormone in insects, has a central role in flight. It is present in brain, ventral ganglia and nerves, supplying peripheral tiss…