Search results for "insect flight"

showing 6 items of 6 documents

Locust flight metabolism studied in vivo by 31P NMR spectroscopy

1991

Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight. 1. In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for …

chemistry.chemical_classificationbiologyPhysiologyIntracellular pHMetabolismbiology.organism_classificationBiochemistryInsect flightCytosolEndocrinologyEnzymechemistryBiochemistryAnimal Science and ZoologySteady state (chemistry)Flux (metabolism)Ecology Evolution Behavior and SystematicsLocustJournal of Comparative Physiology B
researchProduct

Functional Gustatory Role of Chemoreceptors in Drosophila Wings

2016

Summary: Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca2+ levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechan…

0301 basic medicinemelanogasterTasteChemoreceptor[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyneuronsInsectmale courtship behavior[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Animals Genetically Modified0302 clinical medicineCytosolConditioning PsychologicalDrosophila ProteinsWings AnimalSensillalcsh:QH301-705.5media_commonAnimal biologybiologyBehavior AnimalAnatomytransductionbitterChemoreceptor CellsDrosophila melanogasterTasteAlimentation et Nutritioncandidate taste receptors;male courtship behavior;apis-mellifera;insect flight;gene;trasnsduction;melanogaster;odorant;neurons;bitterinsect flightanimal structuresmedia_common.quotation_subjectCarbohydratesTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular BiologyFluorescence03 medical and health sciencesBiologie animalecandidate taste receptorsAnimalsFood and Nutrition[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium SignalingRNA Messengerapis-melliferageneDrosophilaodorantWingfungiNeurosciencesWater[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesisbiology.organism_classification[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics030104 developmental biologylcsh:Biology (General)FoodNeurons and CognitionCalciumNeuroscience030217 neurology & neurosurgery
researchProduct

Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons

2019

Summary Insect flight is a complex behavior that requires the integration of multiple sensory inputs with flight motor output. Although previous genetic studies identified central brain monoaminergic neurons that modulate Drosophila flight, neuro-modulatory circuits underlying sustained flight bouts remain unexplored. Certain classes of dopaminergic and octopaminergic neurons that project to the mushroom body, a higher integrating center in the insect brain, are known to modify neuronal output based on contextual cues and thereby organismal behavior. This study focuses on how monoaminergic modulation of mushroom body GABAergic output neurons (MBONs) regulates the duration of flight bouts. O…

0301 basic medicineMale[SDV]Life Sciences [q-bio]Sensory systemBiologyin-vivoInsect flightGeneral Biochemistry Genetics and Molecular Biologymemory03 medical and health sciences0302 clinical medicineoctopaminebodiesexpressionMonoaminergicmedicineAnimalsGABAergic NeuronsMushroom Bodies030304 developmental biologymarker0303 health sciencesbehaviorFlight initiation[SDV.BA]Life Sciences [q-bio]/Animal biologyDopaminergicOambdrosophilaCaMPARI030104 developmental biologyDrosophila melanogasternervous systemDisinhibitionFood searchFlight AnimalMushroom bodiesPAMGABAergicFemaledopaminemedicine.symptomsub-esophageal zone.General Agricultural and Biological SciencescircuitNeuroscience030217 neurology & neurosurgerySSRN Electronic Journal
researchProduct

Central Modulatory Neurons Control Fuel Selection in Flight Muscle of Migratory Locust

2003

Insect flight is one of the most intense and energy-demanding physiological activities. High carbohydrate oxidation rates are necessary for take-off, but, to spare the limited carbohydrate reserves, long-distance flyers, such as locusts, soon switch to lipid as the main fuel. We demonstrate that before a flight, locust muscles are metabolically poised for take-off by the release of octopamine from central modulatory dorsal unpaired median (DUM) neurons, which increases the levels of the potent glycolytic activator fructose 2,6-bisphosphate in flight muscle. Because DUM neurons innervating the flight muscles are active during rest but selectively inhibited during flight, they stimulate carbo…

Central Nervous SystemMalemedicine.medical_specialtyGrasshoppersBrief CommunicationInsect flightCarbohydrate catabolismInternal medicinemedicineFructosediphosphatesPremovement neuronal activityAnimalsGlycolysisProtein kinase AMuscle SkeletalOctopamineNeuronsbiologyGeneral NeuroscienceMigratory locustbiology.organism_classificationCyclic AMP-Dependent Protein KinasesEndocrinologyFlight AnimalOctopamine (neurotransmitter)FemaleGlycolysisLocustSignal Transduction
researchProduct

Properties of 6-phosphofructokinase from insect flight muscle

1987

BiochemistryBiologyBiochemistryInsect flightPhosphofructokinaseBiochemical Society Transactions
researchProduct

Coordination and Integration of Metabolism in Insect Flight*

1997

Abstract Insect flight is the most energy-demanding activity of animals. It requires the coordination and cooperation of many tissues, with the nervous system and neurohormones controlling the performance and energy metabolism of muscles, and of the fat body, ensuring that the muscles and nerves are supplied with essential fuels throughout flight. Muscle metabolism can be based on several different fuels, the proportions of which vary according to the insect species and the stage in flight activity. Octopamine, which acts as neurotransmitter, neuromodulator or neurohormone in insects, has a central role in flight. It is present in brain, ventral ganglia and nerves, supplying peripheral tiss…

Nervous systemPhysiologyOctopamine (drug)BiologyBiochemistryInsect flightchemistry.chemical_compoundmedicine.anatomical_structureFructose 26-bisphosphatechemistryBiochemistryHemolymphmedicinemedicine.symptomNeurohormonesMolecular BiologyMuscle contractionPhosphofructokinaseComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
researchProduct